Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2620, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551180

RESUMEN

Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals' neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedades Mitocondriales , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Luteína/metabolismo , Luteína/farmacología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
2.
ACS Nano ; 16(4): 5830-5838, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35298121

RESUMEN

Biocompatible nanoscaled metal-organic frameworks (nanoMOFs) have been widely studied as drug delivery systems (DDSs), through different administration routes, with rare examples in the convenient and commonly used oral administration. So far, the main objective of nanoMOFs as oral DDSs was to increase the bioavailability of the cargo, without considering the MOF intestinal crossing with potential advantages (e.g., increasing drug availability, direct transport to systemic circulation). Thus, we propose to address the direct quantification and visualization of MOFs' intestinal bypass. For that purpose, we select the microporous Fe-based nanoMOF, MIL-127, exhibiting interesting properties as a nanocarrier (great biocompatibility, large porosity accessible to different drugs, green and multigram scale synthesis, outstanding stability along the gastrointestinal tract). Additionally, the outer surface of MIL-127 was engineered with the biopolymer chitosan (CS@MIL-127) to improve the nanoMOF intestinal permeation. The biocompatibility and intestinal crossing of nanoMOFs is confirmed using a simple and relevant in vivo model, Caenorhabditis elegans; these worms are able to ingest enormous amounts of nanoMOFs (up to 35 g per kg of body weight). Finally, an ex vivo intestinal model (rat) is used to further support the nanoMOFs' bypass across the intestinal barrier, demonstrating a fast crossing (only 2 h). To the best of our knowledge, this report on the intestinal crossing of intact nanoMOFs sheds light on the safe and efficient application of MOFs as oral DDSs.


Asunto(s)
Quitosano , Estructuras Metalorgánicas , Ratas , Animales , Sistemas de Liberación de Medicamentos , Porosidad , Administración Oral
3.
Nano Today ; 43: 101393, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35035515

RESUMEN

There is an urgent need to develop new vaccination strategies to elevate the cross-neutralization against different SARS-CoV-2 strains. In this study, we construct the spherical amantadine-assembled nanostimulator (AAS). Amantadine as immunostimulating molecules are displayed on the outermost layer of AAS. Molecular mechanism analysis reveals that AAS can activate RIG-I-like receptor (RLR) signaling pathway to increase the expression of type I interferons in vivo. AAS-mediated activation of RLR signaling pathway further promotes the maturation and proliferation of dendritic cells (DCs) and T helper cells (Ths), finally activating B cells to produce potent antibody responses. In performance evaluation experiments, the mixture of AAS and dimeric RBD significantly enhances RBD-specific humoral responses (4-fold IgG, 3.5-fold IgG2a, 3.3-fold IgG2b, 3.8-fold IgG3 and 1.3-fold IgM), in comparison to aluminum adjuvant-assistant dimeric RBD. Importantly, AAS dramatically elevates dimeric RBD-elicited cross-neutralization against different SARS-CoV-2 strains such as Wuhan-Hu-1 (9-fold), B.1.1.7 (UK variant, 15-fold), B.1.351 (South African variant, 4-fold) and B.1.617.2 (India variant, 7-fold). Our study verifies the mechanism of AAS in activating RLR signaling pathway in host immune system and highlights the power of AAS in improving antigen-elicited cross-neutralization against different SARS-CoV-2 strains.

4.
Sci Rep ; 4: 6759, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25342169

RESUMEN

The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.


Asunto(s)
Endopeptidasas/metabolismo , Compuestos Organometálicos/metabolismo , Caseínas/química , Caseínas/metabolismo , Catálisis , Línea Celular , Endopeptidasas/química , Humanos , Cinética , Estructuras Metalorgánicas , Compuestos Organometálicos/química , Proteolisis , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...